Key Concept Standard Form of a Polynomial Function
The standard form of a polynomial function arranges the terms by degree in
descending numerical order.
A polynomial function $P(x)$ in standard form is

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

where $n$ is a nonnegative integer and $a_{n}, \ldots, a_{0}$ are real numbers.
$P(x)=4 x^{3}+3 x^{2}+5 x-2$
Cubic term Quadratic term Linear term Constant term
You can classify a polynomial by its degree or by its number of terms. Polynomials of
degrees zero through five have specific names, as shown in this table.

| Degree | Name Using <br> Degree | Polynomial <br> Example | Number of <br> Terms | Name Using <br> Number of Terms |
| :---: | :--- | :---: | :---: | :--- |
| 0 | constant | 5 | 1 | monomial |
| 1 | linear | $x+4$ | 2 | binomial |
| 2 | quadratic | $4 x^{2}$ | 1 | monomial |
| 3 | cubic | $4 x^{3}-2 x^{2}+x$ | 3 | trinomial |
| 4 | quartic | $2 x^{4}+5 x^{2}$ | 2 | binomial |
| 5 | quintic | $-x^{5}+4 x^{2}+2 x+1$ | 4 | polynomial of 4 terms |

Write each polynomial in standard form. What is the classification of each
polynomial by degree? by number of terms?
$\begin{array}{ll}\text { ( } 3 x+9 x^{2}+5 & \text { B } 4 x-6 x^{2}+x^{4}+10 x^{2}-12 \\ 9 x^{2}+3 x+5 & \left.x^{4}+4 x^{2}+4 x\right)\end{array}$
quadratic trinomial $\quad x^{4}+4 x^{2}+4 x-12$
quadratic trinomial quartic polynomial of 4 terms
(by dogree) (by\#tiofterms) (bydegrec) (by \# of terms)
Write each polynomial in standard form. What is the classification of each
by degree? by number of terms?
$\begin{array}{ll}\text { a. } 3 x^{3}-x+5 x^{4} & \text { b. } 3-4 x^{5}+2 x^{2}+10\end{array}$
$5 x^{4}+3 x^{3}-x \quad-4 x^{5}+2 x^{2}+13$
quartic (by degree) quintic (by degree)
trinomial (\# of terms) trinomial (by \#of terms)

## Vocabulary

Monomial: 1 term
Binomial: 2 terms
Trinomial: 3 terms

Polynomial: A monomial or a sum of terms that are monomials.

Degree of a monomial: is the sum of the exponents of its variables.
Degree of a polynomial: is the same as that of its term with the greatest degree

Find the degree of each polynomial:


Greatest degree: 3


Greatest degree: 4

The standard form of a polynomial function arranges the terms by degree in descending numerical order.

Write each in standard form, then classify by degree and number of terms.

1. $\left(2 x^{2}+9 x-7\right)-\left(4 x^{3}+9 x-2\right)$
2. $\left(3 x^{2}+1\right)\left(3 x^{2}-1\right)$

$$
2 x^{3}+9 x-7-4 x^{3}-9 x+2
$$

$$
-4 x^{3}+2 x^{2}-5
$$

cubic trinomial
quartic
binomial

Write each polynomial in factored form.
3. $x^{3}-x^{2}-12 x$

4.

$$
\text { 4. } \begin{aligned}
& x^{3}-2 x^{2}-15 x \\
& \times\left(x^{2}-2 x-15\right) \\
& x(x-5)(x+3)
\end{aligned}
$$

Find the zeroes of each function.
5. $y=(x+2)(x-1)(x-3)$
6. $y=x(x-3)(x+5)$

Set $y=0$ d solve for $x$

$$
0=x(x-3)(x+5)
$$

$0=(x+2)(x-1)(x-3)$

$$
x=0 \text { or } x-3=0 \text { or } x+5=0
$$

$x+2=0$ or $x-1=0$ or $x-3=0$
$x=-2$ or $x=1$ or $x=3$
a is a zero of multiplicity $n$ means that $x$-a appears $n$ times as a factor

Find the zeroes of each function. State the multiplicity of multiple zeroes.
7. $y=(x-3)^{3}(2 x+5)$

$x-3=0$ or $2 x+5=0$
$x=3$ multiplicity of 3
$x=-5 / 2$ multiplicity of 1
8.

$$
\begin{aligned}
& y=x^{\mathbf{3}}-\mathbf{4} \boldsymbol{x}^{\mathbf{2}}+\mathbf{4 x} \\
& 0=x^{3}-4 x^{2}+4 x \\
& 0=x\left(x^{2}-4 x+4\right) \\
& 0=x(x-2)(x-2) \\
& 0=x \cdot(x-2)^{2} \\
& x=0 \text { or } \frac{x-2=0}{x=2} \\
& \text { multipliaty } \\
& \text { of } 1
\end{aligned}
$$

